

Gantry Structure Fully-Auto Video Measuring Machine

EVA Series

Real-Time Navigation Rapid Locating of Sample Position

Less Error Within 2um

_	
	℅
	~

Advance Software EV Measuring

Intelligent Illumination 8-Division LED Ring Light

Auto Measurement Fast Operation of Measurement

Auto Focus Reduce Time and Effort

Characteristics

High precision Grade 00 granite base and column, with stable expansion of the physical properties, to ensure high stability and accuracy.

High precision optical grating ruler from the world's top brand from Germany, Heidenhain with the accuracy of 0.001mm. High accuracy that comes with great stability.

Precision linear guide, grinding ball screw and full closed-loop servo motor to ensure smooth operation and precise positioning. The motor is noise-free during operation.

High definitive automatic continuous zoom lens and high resolution color digital camera, to ensure clear image without distortion.

With programmable 4-ring 8-division LED cold illumination and contour LED parallel illumination and internal intelligent light adjustment, it can automatic control the brightness of the light.

Model	EVA-5040	EVA-6050	EVA-7060	EVA-8070	EVA-10080	EVA-120100	EVA-160120	EVA-180120	EVA-200150
X/Y-Axis Travel	500 x 400mm	600 x 500mm	700 x 600mm	800 x 700mm	1000 x 800mm	1200 x 1000mm	1600 x 1200mm	1800 x 1200mm	2000 x 1500mm
Glass Table	560 x 460mm	660 x 560mm	760 x 660mm	860 x 760mm	1060 x 860mm	1260 x 1060mm	1760 x 1360mm	2060 x 1560mm	2700 x 1560mm
Workbench	660 x 560mm	760 x 660mm	860 x 760mm	960 x 860mm	1160 x 960mm	1360 x 1160mm	1860 x 1460mm	2160 x 1760mm	2860 x 1660mm
Dimension (W x D x H)								3000 x 2510 x 1920mm	
Load Capacity					50kg				
Net Weight	500kg	650kg	750kg	850kg	1050kg	1250kg	1450kg	1650kg	2000kg
Z-axis Travel				High-precision	Linear Guide, Workir	ng Travel 200mm			
X/Y/Z-axis Travel				0.00	1mm; Optional 0.00	001mm			
Accuracy			X/Y-Axis Accu	racy: ≤ 2.2 + L/200 (um); Z-Axis Accura	cy: ≤ 4 + L/50 (µm) [l	= Length (mm)]		
Repeatability					2µm				
Main Structure		High Stability Grade 00 Granite							
Grating Scale		Heidenhain (GERMANY) RSF high precision grating scale, with the accuracy of 0.001mm							
Motor	Three-axis Servo Motor; Optional: Joystick								
Illumination System	Surface: Stepless Adjustable 4 -ring 8-division LED Cold Illumination								
(Programmable)	Contour: LED Parallel Illumination								
CCD	High Resolution 520TV Color CCD Camera (SONY Sensor)								
	MT High Resolution Automatic Zoom Stereo Lens								
Motorized Zoom Lens	Magnification: 0.7X ~ 4.5X; Video Magnification: 30X ~ 225X								
Working Distance	90mm								
Field-of-View	10.6 – 1.6mm; Optional Lens 0.5X & 2X								
Measuring Software	EV Measuring								
Power Supply	220V ± 10% (AC) 50Hz								

Optional Accessories

Touch Probe

After the equipment is installed with probe, it can be used to measure the following parameters:

- Height, width, lengthThe angle between the two sides
- Vertical angle of cone
- Diameter of cylinder
- Chamfer
- Straightness, flatness, roundness, cylindricity
- Verticality, parallelism, inclination, and so on.

Coaxial Light Source with Different Effect

Strong threedimensional effect vertical light

ring light

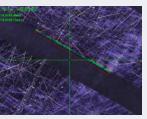
Bright overall effect

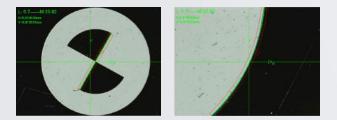
Part Accessories

• 4-ring 8-division LED Surface Illumination	 LED Parallel Contour Illumination 	• Zoom Lens	Video Capture Card
CCD Camera	Calibration Glass Stage	Data Integration Box	Software Dongle
Workbench	Computer System	Linear Scale	AV Cable

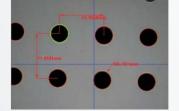
Introduction

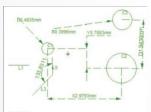
EV Measuring is a professional multisensor measuring software which combined with the developers years of experience in the measuring and software research industry. The design principle is friendly operation, powerful function, high accuracy and stability, simple maintenance.


D & B & Q B X O O A SHI D O P	ルイトム=○タヨ 日辺る 下と	0 🗐 🖬		
	Control of Mar [20 Geny salar	C2 Ref cost: Carbon Carbon Ansual X 12800 V 43100 V 43100 V 43100 Rafied 01206 Betware 05411 Percenter 01995	Bits Orac UpTol 12.803 0.016 4.016 3.105 6.0011 6.2001 6.229 0.0006 6.211 0.221 6.0006 6.212 0.211 6.0006 6.212 0.211 6.0006 6.212 0.4020 6.0006 6.0006 0.4212 4.0011 6.0006 0.4212 4.0011 6.0006 0.4014 4.0006 6.0006	Leafel X -12.6720 * Y -8.0090 * Z -0.7290 *
	- Sina fary velocities - Front app - Total	Tant	□ La ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	ОК
Greefite Steen May Moore Array Movemer and Perpet REAL		L 1 K 4161 Not see 1 to 1 Not see 1 to 1		1.6561.00
► 11 H = 🔳	• + * *x × E		1	1
0m		0 88	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	2 2 3 9 9 9 9	Ф Р .	· · · · ·	
	000~0			
		0 ₂		
	• / ⊕ € ⊕ ∰ ↔ ↓ I ∧ ♡ ●	00		
	·····································	and the state of t		
Chinde Gride by Heage				
Tredy	P: 2/1-608.3(11)30-13.36	Project current hely	Edge mode 1 Max	Courd made 1 Descartes After camp can me D.


Software Function

- Excellent software architecture design and fully objectoriented, to ensure the software is stable and reliable.
- Professional SPC statistical analysis software connected to measuring software, to realize that the data could automatically export to SPC database without manual operation.
- With powerful edge finder algorithm, which can help to get the edge of the shadow or dark image and ensure high accuracy.


- Support with multiple language, no need to install language pack and change the software which is convenient to local customers.
- The same model of software will be permanent free to update, it can help to reduce other trouble to customer.
- The software could automatically recognize and measure line, circle, arc and other elements.



The measuring data can auto export to TXT, WORD, EXCEL, and SPC software database without the third party software conversion and manual operation.

	A	C			7	.6	-H-
3	服務名称:						
2	工件名称:						
1.5	工件编号:						
- 4	操作者:						
1	公司名称	7					
100	a cruin L						
14	序号 元素	12					
1.00	1 CIRL	单位:	0.792	6, 293	0,702	0,794	0,093
3	2 C1R2	半径	0.391	0.792	0, 791	0, 293	0.392
10	S CIRS	奉隆	41. 3925	0.3521	0. 1901	0.3901	40, 2921
100							
11.	4:C1B4	平位	0.3922	0.7922	0.1922	0.7922	0.7922
22	5 C1R5	半位	0,3500	0.2209	0.3909	0.2369	0.2909
13	5 C196	半径	0.3912	0.2919	0, 5919	0.3919	0.7219
14	T.C187	半径	0.3911	0, 2911	0.3911	0.3911	0.3911
14 15	II CIRS	举任	0, 3921	0, 9901	0.3921	0. 3921	6, 7921
16	9.6189	半径	0.3933	0.9933	0.2933	0.7973	0, 2973
17	10 CIR10	単径	0.2914	0.0914	0.3914	0.3914	0.7914
21	11 CIE11	学校	0. 2907	0, 5907	0.390T	0.3907	0, 7907
-32		手程	0.3911	0,3918	0.3918	0.3910	0. 2918
12	- second			and the second	a crist	and the second second	

The image window and drawing window can display the measured elements and marking 2D dimension, which will get the result directly.

The software can photograph mosaic the workpiece to get a large map, then marke and measure it.

一 三维测量 ————————————————————————————————————
0 🗖 🖾
k

The software can support to add simple probe based on the video measurement, to realize 3D measurement.